L’informatisation des entreprises a d’abord commencé par les fonctions générant beaucoup d’écritures ou de calculs (comptabilité, paie, stocks, facturation, ...), centrant les applications mises en place sur le support à la production des activités courantes et non sur leur pilotage. Toutes ces applications permettaient la saisie de données, leur traitement et la production en sortie de résultats prenant dans un premier temps la forme de documents opérationnels.
Ces systèmes de production regorgeaient d’informations, et très rapidement les entreprises ont cherché à exploiter ces dernières pour qu’elles servent de base à des analyses, à des prises de décision. Cependant si les systèmes de production étaient optimisés pour gérer des transactions ou des opérations élémentaires et peu consommatrices de ressources, ils n’étaient pas adaptés pour bien répondre aux volumes et à la complexité des traitements des activités d’analyse. En effet la gestion opérationnelle nécessite de traiter rapidement de très nombreuses requêtes simples, son cadre de travail est principalement celui d’une opération, alors que les applications d’aide à la décision n’ont pas les mêmes contraintes de temps de réponses et s’intéressent à des ensembles d’opérations sur des périodes de temps importantes.
La cohabitation d’applications de production et d’aide à la décision sur un même serveur informatique est très conflictuelle. Fortes consommatrices de ressources, les applications analytiques peuvent extrêmement dégrader les temps de réponse de toutes les applications avec lesquelles elles partagent un serveur, jusqu’à très fortement perturber les activités courantes. Cette situation inacceptable pour les équipes opérationnelles a conduit à mettre en œuvre des moyens séparés spécifiques pour répondre aux besoins d’analyse et d’aide à la décision. Ainsi sont apparus les premiers Infocentres (1980).
Les premiers infocentres se sont contentés de gérés une copie des données des applications de production dans des environnements séparés dédiés à l’analyse. Le plus souvent ils n’intégraient pas les données de plusieurs applications, et seules les applications les plus importantes voyaient leurs données régulièrement dupliquées dans un infocentre. Le rythme d’alimentation était habituellement mensuel, l’utilisation de ces systèmes n’étant pas aisées, des équipes d’assistance ont été alors souvent mise en place. Mais malgré leur rusticité ou leur coût, ces systèmes ont beaucoup apportés au management des activités, et les entreprises n’ont dés lors pas cessé de chercher à les multiplier.
De nombreux moyens d’analyse ont été développés au fil du temps en utilisant toutes les avancées technologiques qui ont vu le jour dans le monde de l’informatique (base de données, ordinateur multiprocesseurs, PC, réseaux locaux, internet, logiciels d’interrogation, de fouille de données, etc.). Mais au-delà de la technique, ce qui a guidé le développement des systèmes d’analyse, c’est l’envie des utilisateurs de mieux comprendre ce que l’entreprise a vécu, pour mieux gérer le futur. Dans cet esprit ils n’ont eu de cesse que d’obtenir une vue la plus globale et la plus exhaustive possible du passé pour mieux anticiper, préparer et conduire les actions à venir.
Concrètement cela a conduit les responsables à fonder leurs systèmes décisionnels sur des données historiques détaillées, de façon à obtenir une vision transverse de l’entreprise à travers toutes les fonctions ou départements, et de permettre dans les phases d’analyse de revenir aux événements opérationnels de base. Ils ont aussi cherché à aller au-delà des tableaux de bord et du reporting, et les plus en pointe ont développé des applications analytiques permettant de répondre aux cinq questions suivantes : « Que s’est-il passé ? », « Pourquoi cela s’est-il passé ? », « Que va-t-il se passer ? », « Que se passe-t-il en ce moment ? », « Que voudrais-je qu’il se passe ? ».
Les analyses correspondant aux questions ci-dessus sont le plus souvent effectuées avec des données relatives à des événements plus ou moins récents. Notamment toutes les questions relevant de l’étude et la définition d’une stratégie peuvent être traitées avec des données historiques annuelles. Pour certains suivis les rythmes budgétaires sont adéquats, mais pour des suivis plus opérationnels des rythmes quotidiens sont nécessaires. Enfin pour certaines opérations, de nombreuses entreprises se sont mises à intégrer de plus en plus rapidement des données dans leur système décisionnel, afin qu’il puisse offrir une aide à la décision et des canevas d’actions aux opérationnels. C’est le cas pour le support d’actions de télévente, de traque de fraude ou de personnalisation de site web, par exemple.
Aujourd’hui on ne fait plus d’infocentre, mais on met en place des infrastructure décisionnelle disponible 24h sur 24, 7 jours sur 7, 52 semaines par an, gérant des gisements de données historiques détaillées, avec des mises à jour en quasi temps réel pour certaines données. Ces gisements alimentent une grande variété d’applications décisionnelles de gestion (indicateurs, tableaux de bord), d’aide aux décisions opérationnelles, de fouille de données ou de pilotage, de façon à rendre les entreprises activement intelligentes.
Pour aller plus loin vous pouvez utilement consulter mes compilations d’articles ci-dessous :
Gérer des données historiques détaillées : une solution ou une pollution
Sortir de l’impasse des systèmes décisionnels hétérogènes par la consolidation
Boulimie des éditeurs de progiciel de gestion intégré
Activer l’intelligence de l’entreprise
Rédigé par Michel Bruley le Mercredi 1 Septembre 2010 à 09:14
|
Permalien
|
{1}
> A LIRE EN CE MOMENT SUR DECIDEO
-
ManoMano renforce sa gouvernance de données grâce à CastorDoc
-
Snowflake renforce la collaboration cross-cloud pour les données d'entreprise et l'intelligence artificielle
-
Snowflake unifie les données transactionnelles et analytiques avec la disponibilité générale des Hybrid Tables
-
La révolution des élites : quand l'IA redistribue le pouvoir
-
Informatica apporte sa contribution aux mégatendances de Microsoft Azure (IA générative, Microsoft Fabric et format en tables de données ouvertes) avec de nouvelles fonctionnalités
-
Dell Technologies présente les dernières innovations de Dell AI Factory pour propulser l’IA en entreprise
-
Eviden va tripler la capacité de calcul de la Finlande avec un nouveau supercalculateur d’IA
-
e-Attestations devient Aprovall
-
Neo4j dépasse les 200 millions de dollars de chiffre d’affaires et accélère son leadership dans le domaine de la GenAI grâce à sa technologie de graphes
-
Precisely nommé leader dans le rapport 2024 d’IDC MarketScape : Worldwide Data Intelligence Platform Software
Profil
Michel Bruley
Liste de liens
Dernières notes
Meilleurs vœux aux parents pour 2024
10/01/2024
Galerie
Archives
Rubriques
Rubriques