Créer son blog Recommander ce blog Avertir le modérateur


Les Technologies de l’Information et des Communications sont essentielles pour aider les entreprises à s’adapter à l’évolution de leurs marchés, notamment aux nouvelles demandes, nouvelles offres, nouvelles réglementations, à la globalisation, à l’évolution des techniques, à la saturation de certains marchés. Dans ce contexte les entreprises doivent faire preuve de beaucoup d’intelligence pour maîtriser leur destinée. Les analystes réputés disent que seules les plus intelligentes survivront. Chez Teradata nous pensons que l’une des clés majeures réside dans la possibilité de transformer des analyses en actions efficaces. Concrètement il ne s’agit pas seulement de faire de la « Business Intelligence » en travaillant des données d’un « Data Warehouse » qui gère des informations plus où moins fraîches, mais de coupler l’Entrepôt de Données avec les systèmes opérationnels de façon à pouvoir toujours fournir au moment voulu, l’information historiques nécessaires pour l’analyse et l’action : c’est le concept d’Active Enterprise Intelligence (AEI).

L’AEI vise à faire passer les moyens décisionnels d’un rôle « passif » à un rôle « actif ». Il ne s’agit plus de seulement supporter les décisions stratégiques comme la détermination des buts, des politiques, la définition des objectifs des organisations, mais de supporter aussi des décisions tactiques, en dotant de moyens décisionnels des opérationnels clés, par exemple ceux qui sont en relation quotidienne avec les partenaires de l’entreprise comme les clients ou les fournisseurs. Dans la fonction Marketing Vente, il s’agit de ne pas se limiter à définir des segmentations, des tarifications, à effectuer des analyses de vente ou de rentabilité, mais de supporter aussi les opérations de Marketing Direct, ou de permettre à un télévendeur de fonder son action sur les données historiques concernant le client avec qui actuellement il est en discussion. L’aide à la décision tactique ou opérationnelle, consiste à donner accès à des informations historiques pour une prise de décision immédiate sur le terrain.

La grande ambition de l’AEI est de permettre un support optimum de l’utilisateur dans son cycle de travail de la donnée à l’action. Vu dans une logique d’apprentissage, ce cycle comprend cinq étapes : observer, comprendre, prévoir, agir, capitaliser l’expérience. Une solution active suppose une grande qualité d’intégration du système d’information, tant au niveau des données historiques prises en compte dans les analyses, qu’au niveau de la liaison avec les systèmes opérationnels pour mener les actions. Les critères de qualité ici sont fraîcheur des données et vitesse de réaction. Concrètement la solution doit offrir des services automatisés spécifiques, tels que des rapports pointant spécialement les exceptions, des analyses ad hoc qui débouchent sur des propositions, des alertes adressées directement à la bonne personne et en temps utile, ou par exemple le déclenchement d’une action externe impliquant aucune ou un minimum d’intervention d’un membre de l’organisation.

L’AEI suppose une architecture adaptée qui permet de prendre en charge les contraintes inhérentes aux fonctions esquissées dans les paragraphes ci-dessus. Dans les grandes entreprises un tel système a les caractéristiques suivantes : multiples domaines fonctionnels, téras octets de données, plusieurs centaines de tables, milliers d’utilisateurs, plusieurs années d’historiques détaillés, services particulièrement exigeants de mises à jour et de requêtes. Concrètement au niveau de l’entrepôt de données les entreprises ont le choix entre une approche centralisée ou une approche départementale, mais tous les grands analystes s’accordent aujourd’hui pour reconnaître la supériorité d’une centralisation des gisements de données, le coût financier prohibitif et l’inefficacité des solutions construites sur des data marts indépendants.

L’AEI ne transforme pas automatiquement la façon de faire des affaires, il apporte seulement une potentialité qui doit être exploitée, il s’agit là d’organisation, de formation, de créativité, d’expérimentation de nouvelles voies, d’évolution de la culture de l’entreprise. Il est clair qu’une entreprise ne peut pas passer en une seule étape d’un décisionnel primaire construit sur des infocentres ou des data marts indépendants, à un Entrepôt de Données Actif ; mais par une urbanisation des systèmes décisionnels et un lotissement correct des projets, il est possible en six à dix mois pour une grande entreprise de mettre en production une infrastructure et les premières applications opérationnelles d’AEI.

Pour aller plus loin sur ce sujet vous pouvez utilement consulter mes articles ci-dessous :

L’avenir des entrepôts de données est dans le Real Time BI et l’Active Enterprise Intelligence

Mise en œuvre d’Active Intelligence Enterprise et de Real-Time BI

Champs d’application & cas concrets d’Active Intelligence Enterprise et de Real-Time BI (Distribution)

Active Intelligence Enterprise et Real-Time BI dans le secteur Bancaire

De l’intelligence active pour les industries Manufacturières

De l’intelligence pour supporter les entreprises actives (Télécommunications)


Rédigé par Michel Bruley le Mardi 7 Avril 2009 à 09:01 | Permalien | Commentaires {0}


> A LIRE EN CE MOMENT SUR DECIDEO
Profil
Michel Bruley
Michel Bruley



Galerie
scan0578.jpg
B6.JPG
B1.JPG
A.JPG
B4.jpg
B8.jpg

RSS ATOM RSS comment PODCAST Mobile


Rubriques

Rubriques