Analyser et traiter un volume de données et un nombre d'utilisateurs conséquent
Devant les vastes volumes de données auxquels elles font face, les entreprises doivent miser sur les dernières technologies afin d'en tirer le meilleur parti. C'est plus particulièrement le cas pour les grandes entreprises : les informations provenant des applications de comptabilité, de gestion des stocks ou encore de CRM constituent des données précieuses mais souvent délicates à exploiter. Il en va de même pour les données non structurées, c'est-à-dire tous les documents textuels : contrats, rapports, publications scientifiques, emails, images, audio, video etc.
Tous ces documents, qui existent dans des formats différents, peuvent être traités et analysés par des « insight engines » qui permettent de fournir une information pertinente et présentée de façon claire, structurée et exploitable pour les collaborateurs.
Constituer rapidement et intelligemment des équipes de travail pour gagner en efficacité. Certains laboratoires pharmaceutiques s'appuient sur le Cognitive Search pour identifier les meilleurs profils et constituer des équipes de travail réunissant les compétences nécéssaires pour un projet donné. Ces laboratoires utilisent cette technologie pour dresser le panorama de ce qui a déjà été fait en matière de recherche sur un sujet précis. En effet, en se basant sur les informations issues de publications scientifiques et d'analyses de laboratoire - qui a travaillé sur telle découverte, qui l'a testée, qui a écrit des thèses sur telle molécule, etc. - les laboratoires sont en mesure de constituer des équipes de travail efficaces.
Autre atout du Cognitive Search : la connaissance des besoins clients. Cette technologie, intégrant des algorithmes de Machine Learning, est notamment utilisée par les opérateurs téléphoniques ou les banques pour anticiper des départs potentiels de clients vers les concurrents et activer ainsi les leviers nécessaires. L'analyse des échanges d'emails va ainsi permettre d'assurer la satisfaction d'un client et, potentiellement, de le retenir. Plus globalement, le traitement automatique du langage naturel, associé à des outils de « Text-Mining », joue un rôle majeur dans la détection d'informations pertinentes permettant d'analyser les données et le comportement du client. Il est ainsi possible d'analyser, par exemple une recherche d'information effectuée par un internaute ou des schémas de navigation sur le site web de l'entreprise pour en déduire un besoin ou une attente d'un client.
Aider l'entreprise à accélérer son processus de prise de décision. Dans le cadre de leur transformation digitale, les entreprises ont dû repenser leurs modèles économiques pour gagner ou regagner en efficacité. Pour y parvenir, l'entreprise doit faire appel à toutes les sources de données internes et externes liées à son activité, et combiner les méthodes d'analyse des donnés structurées avec celles des données non structurées. Par exemple, l'analyse des chiffres – qui sont des données structurées – permet à elle seule de juger la performances des différents services et produits d'une entreprise. Mais lorsqu'elle est combinée à l'analyse du comportement des clients – données non structurées – elle permet d'extraire des informations pertinentes sur la façon dont ces produits et services peuvent être améliorés afin de mieux répondre aux attentes des clients. Avec toutes ces informations en main, l'entreprise peut prendre, plus rapidement, des décisions lui permettant de satisfaire et de fidéliser sa clientèle. Un « insight engine » basé sur le Cognitive Search permet donc à l'entreprise d'avoir toutes les cartes en main au moment d'aborder des décisions stratégiques et donc de gagner en efficacité.
Avec l'adoption de cette technologie, l'entreprise prend des décisions bien fondées, réduit les risques, adopte de nouveaux business modèles et des processus de travail plus agiles. De quoi réaliser un retour sur investissement important.
Avec le Cognitive Search, les données de l'entreprise ne sont pas de simples lignes informatiques : les données structurées et non structurées s'enrichissent mutuellement pour offrir une vision globale du marché et de la clientèle. De quoi réussir sa transformation digitale. Finalement, la seule limite du Cognitive Search réside dans la capacité de l'entreprise à en imaginer l'usage.
Devant les vastes volumes de données auxquels elles font face, les entreprises doivent miser sur les dernières technologies afin d'en tirer le meilleur parti. C'est plus particulièrement le cas pour les grandes entreprises : les informations provenant des applications de comptabilité, de gestion des stocks ou encore de CRM constituent des données précieuses mais souvent délicates à exploiter. Il en va de même pour les données non structurées, c'est-à-dire tous les documents textuels : contrats, rapports, publications scientifiques, emails, images, audio, video etc.
Tous ces documents, qui existent dans des formats différents, peuvent être traités et analysés par des « insight engines » qui permettent de fournir une information pertinente et présentée de façon claire, structurée et exploitable pour les collaborateurs.
Constituer rapidement et intelligemment des équipes de travail pour gagner en efficacité. Certains laboratoires pharmaceutiques s'appuient sur le Cognitive Search pour identifier les meilleurs profils et constituer des équipes de travail réunissant les compétences nécéssaires pour un projet donné. Ces laboratoires utilisent cette technologie pour dresser le panorama de ce qui a déjà été fait en matière de recherche sur un sujet précis. En effet, en se basant sur les informations issues de publications scientifiques et d'analyses de laboratoire - qui a travaillé sur telle découverte, qui l'a testée, qui a écrit des thèses sur telle molécule, etc. - les laboratoires sont en mesure de constituer des équipes de travail efficaces.
Autre atout du Cognitive Search : la connaissance des besoins clients. Cette technologie, intégrant des algorithmes de Machine Learning, est notamment utilisée par les opérateurs téléphoniques ou les banques pour anticiper des départs potentiels de clients vers les concurrents et activer ainsi les leviers nécessaires. L'analyse des échanges d'emails va ainsi permettre d'assurer la satisfaction d'un client et, potentiellement, de le retenir. Plus globalement, le traitement automatique du langage naturel, associé à des outils de « Text-Mining », joue un rôle majeur dans la détection d'informations pertinentes permettant d'analyser les données et le comportement du client. Il est ainsi possible d'analyser, par exemple une recherche d'information effectuée par un internaute ou des schémas de navigation sur le site web de l'entreprise pour en déduire un besoin ou une attente d'un client.
Aider l'entreprise à accélérer son processus de prise de décision. Dans le cadre de leur transformation digitale, les entreprises ont dû repenser leurs modèles économiques pour gagner ou regagner en efficacité. Pour y parvenir, l'entreprise doit faire appel à toutes les sources de données internes et externes liées à son activité, et combiner les méthodes d'analyse des donnés structurées avec celles des données non structurées. Par exemple, l'analyse des chiffres – qui sont des données structurées – permet à elle seule de juger la performances des différents services et produits d'une entreprise. Mais lorsqu'elle est combinée à l'analyse du comportement des clients – données non structurées – elle permet d'extraire des informations pertinentes sur la façon dont ces produits et services peuvent être améliorés afin de mieux répondre aux attentes des clients. Avec toutes ces informations en main, l'entreprise peut prendre, plus rapidement, des décisions lui permettant de satisfaire et de fidéliser sa clientèle. Un « insight engine » basé sur le Cognitive Search permet donc à l'entreprise d'avoir toutes les cartes en main au moment d'aborder des décisions stratégiques et donc de gagner en efficacité.
Avec l'adoption de cette technologie, l'entreprise prend des décisions bien fondées, réduit les risques, adopte de nouveaux business modèles et des processus de travail plus agiles. De quoi réaliser un retour sur investissement important.
Avec le Cognitive Search, les données de l'entreprise ne sont pas de simples lignes informatiques : les données structurées et non structurées s'enrichissent mutuellement pour offrir une vision globale du marché et de la clientèle. De quoi réussir sa transformation digitale. Finalement, la seule limite du Cognitive Search réside dans la capacité de l'entreprise à en imaginer l'usage.
Autres articles
-
La NASA s’appuie sur le moteur d’Enterprise Search de Sinequa pour propulser son nouveau moteur Science Discovery Engine
-
Sinequa étend son partenariat avec Google Cloud et offre des fonctionnalités avancées de génération augmentées de récupération (RAG)
-
Sinequa étend son partenariat avec Google Cloud et offre des fonctionnalités avancées de génération augmentées de récupération (RAG)
-
Sinequa met la puissance de ChatGPT au service des entreprises en associant son moteur de recherche neuronale à de grands modèles de langage
-
Sinequa reconnu par Gartner comme un leader dans le Magic Quadrant pour les Insight Engines