Dans les entreprises industrielles ou commerciales la mise en place d’un système d’information décisionnel, conduit systématiquement à mettre d’abord en place des tableaux de bord, qui permettent d’appréhender certains aspects de la situation des activités concernées. Rapidement cependant ces tableaux de bord suscitent beaucoup de questions qui restent sans réponse, et les utilisateurs souhaitent alors dépasser la simple description des situations, en faisant des analyses qui permettent de rechercher les causes des résultats qu’ils observent. Lorsqu’une organisation commence à identifier et comprendre les paramètres de ses activités, elle cherche alors à exploiter ses informations pour faire des prévisions, car la capacité de prévoir et d’anticiper le futur est toujours essentielle pour une gestion stratégique de l’entreprise.
La prévision économique est une discipline qui est aujourd’hui bien maîtrisée. La gamme des théories et des outils à la disposition des prévisionnistes est très étendue, et la pratique effective de la prévision a connu de nombreux développements dans les organisations. Il existe une grande diversité de techniques pour répondre à la variété des tâches de prévision des différentes fonctions des entreprises, et le progrès constant de l’informatique décisionnelle joue un rôle prépondérant dans la généralisation de la production d’informations prévisionnelles. Cependant la prévision économique est toujours incertaine, et aux estimations des valeurs futures sont toujours associés des intervalles de confiance, des incertitudes sur les décisions des acteurs concernés et les réactions en chaîne qui en découlent, tout cela rendant toute prévision périlleuse (voir le thème de la théorie des jeux).
Si les tableaux bord peuvent être utilisés par des milliers de personnes dans une grande entreprise, les analystes et les prévisionnistes sont toujours beaucoup moins nombreux. Mais si le nombre d’utilisateurs finaux qui applique des techniques avancées d’analyse et de prévision est dans une entreprise généralement limité, ce petit nombre de personnes est par contre générateur de beaucoup de valeur pour la conduite des activités. Les analystes et prévisionnistes sont aussi de grands consommateurs de ressources informatiques, et peuvent générer en pointe jusqu’à 50% de la charge de traitement d’un système d’information décisionnel. Cette lourde utilisation de ressources s’expliquant par la complexité du travail effectué et les volumes de données historiques à traiter, car l’élaboration de modèles implique généralement l’utilisation de métriques complexes dérivées de nombreuses observations.
Les systèmes d’information opérationnels représentent des mines d’informations élémentaires, qui permettent par leur traitement des anticipations efficaces et précises. Les champs d’application sont extrêmement étendus, qu’il s’agisse de l’optimisation de la gestion des contacts clients, de la gestion des risques (détection de fraude, lutte anti-blanchiment, lutte antiterrorisme), de merchandising, d’optimisation de la chaîne logistique et de la gestion de stock, d’optimisation des flux de matières, d’informations, d’optimisation de gestion de production, d’optimisation de l’emploi des ressources humaines, de service client, de gestion de configuration, etc. Pour répondre à ces besoins les systèmes décisionnels doivent gérer des informations plus ou moins fraîches, et pour certaines applications il est parfois nécessaire d’intégrer des données opérationnelles plusieurs fois par jour, voir en quasi temps réel.
Pour aller plus loin vous pouvez utilement consulter ci-dessous mes autres articles sur ce sujet :
De la prévision de la demande client
Entrepôt de données et prévision de la demande
Lablaw où comment réduire les ruptures de stock avec un bon système de prévision;
Overstock.com un entrepôt de données actif
La prévision économique est une discipline qui est aujourd’hui bien maîtrisée. La gamme des théories et des outils à la disposition des prévisionnistes est très étendue, et la pratique effective de la prévision a connu de nombreux développements dans les organisations. Il existe une grande diversité de techniques pour répondre à la variété des tâches de prévision des différentes fonctions des entreprises, et le progrès constant de l’informatique décisionnelle joue un rôle prépondérant dans la généralisation de la production d’informations prévisionnelles. Cependant la prévision économique est toujours incertaine, et aux estimations des valeurs futures sont toujours associés des intervalles de confiance, des incertitudes sur les décisions des acteurs concernés et les réactions en chaîne qui en découlent, tout cela rendant toute prévision périlleuse (voir le thème de la théorie des jeux).
Si les tableaux bord peuvent être utilisés par des milliers de personnes dans une grande entreprise, les analystes et les prévisionnistes sont toujours beaucoup moins nombreux. Mais si le nombre d’utilisateurs finaux qui applique des techniques avancées d’analyse et de prévision est dans une entreprise généralement limité, ce petit nombre de personnes est par contre générateur de beaucoup de valeur pour la conduite des activités. Les analystes et prévisionnistes sont aussi de grands consommateurs de ressources informatiques, et peuvent générer en pointe jusqu’à 50% de la charge de traitement d’un système d’information décisionnel. Cette lourde utilisation de ressources s’expliquant par la complexité du travail effectué et les volumes de données historiques à traiter, car l’élaboration de modèles implique généralement l’utilisation de métriques complexes dérivées de nombreuses observations.
Les systèmes d’information opérationnels représentent des mines d’informations élémentaires, qui permettent par leur traitement des anticipations efficaces et précises. Les champs d’application sont extrêmement étendus, qu’il s’agisse de l’optimisation de la gestion des contacts clients, de la gestion des risques (détection de fraude, lutte anti-blanchiment, lutte antiterrorisme), de merchandising, d’optimisation de la chaîne logistique et de la gestion de stock, d’optimisation des flux de matières, d’informations, d’optimisation de gestion de production, d’optimisation de l’emploi des ressources humaines, de service client, de gestion de configuration, etc. Pour répondre à ces besoins les systèmes décisionnels doivent gérer des informations plus ou moins fraîches, et pour certaines applications il est parfois nécessaire d’intégrer des données opérationnelles plusieurs fois par jour, voir en quasi temps réel.
Pour aller plus loin vous pouvez utilement consulter ci-dessous mes autres articles sur ce sujet :
De la prévision de la demande client
Entrepôt de données et prévision de la demande
Lablaw où comment réduire les ruptures de stock avec un bon système de prévision;
Overstock.com un entrepôt de données actif
Rédigé par Michel Bruley le Mardi 1 Septembre 2009 à 08:24
|
Permalien
|
{0}
> A LIRE EN CE MOMENT SUR DECIDEO
-
Qlik améliore l’intégration avec SAP, Databricks et Snowflake et favorise la création de valeur grâce à l’IA
-
Encadrer l’utilisation de l’IA générative en entreprise
-
Qlik lève les obstacles à la migration vers le cloud et ouvre la voie à une adoption transparente de l’IA dans tous les secteurs
-
Databricks lève 10 milliards de dollars dans une levée de fonds en Série J, avec une valorisation de 62 milliards de dollars
-
Boomi renforce ses capacités de gestion des données avec l'acquisition du fournisseur d'intégration de données Rivery
-
Comand AI lève 8,5 millions d'euros pour apporter une supériorité militaire décisive à la France et ses alliés
-
Une entreprise française sur deux réduit ses investissements dans l'IA par manque de confiance
-
ChatGPT nous donne ses 5 tendances du marché de la data en 2025
-
Prédictions IA pour 2025 : embrasser la collaboration entre les humains et les machines
-
Cloudera accélère l'IA d'entreprise avec le programme RAG Studio Preview
Profil
Michel Bruley
Liste de liens
Dernières notes
Meilleurs vœux aux parents pour 2024
10/01/2024
Galerie
Archives
Rubriques
Rubriques