Créer son blog Recommander ce blog Avertir le modérateur


La prévision est souvent considérée comme l’aspect le plus problématique de la gestion, mais les experts nous disent qu’il est possible d’établir de bonnes prévisions (précises, fiables) grâce à des méthodes appropriées, qu’il faut avoir confiance et ne pas avoir peur de les utiliser.

Les prévisions sont importantes pour toutes les fonctions de l’entreprise. La Finance utilise les prévisions à long terme pour estimer les besoins futurs en capital. Les Ressources humaines évaluent les besoins de main-d’œuvre. Le Marketing développe des prévisions de ventes utilisées pour la planification à moyen et long terme. La Production développe et utilise les prévisions pour prendre des décisions telles qu’établir les horaires de la main-d’œuvre, déterminer les besoins en stocks et planifier les besoins en capacité à long terme.

Parmi toutes les prévisions qu’une organisation peut faire, l’estimation de la demande future est une donnée clé, car c’est l’une des plus utiles pour les entreprises. En effet bien prévoir la demande client permet par exemple d’établir quelle capacité de production est requise afin d’ajuster l’offre à la demande, de déterminer les meilleures stratégies de production, de planifier l’utilisation des équipements et les besoins en équipements, de planifier la main-d’œuvre requise, d’orienter la politique et les stratégies de gestion des stocks.

La prévision de la demande de biens et services offerts par l’entreprise peut être établie soit mathématiquement (données historiques), soit intuitivement (connaissance du marché), soit en combinant les deux méthodes. Les éléments à apprécier sont : la tendance (variation significative en fonction du temps), la saisonnalité (variation régulière qui se répète périodiquement), le cycle (évolution qui s'étale sur plusieurs années et qui peut être attribuée à des cycles de vie des produits ou à des conditions économiques, politiques, etc.), l’éventuelle composante aléatoire (variation qui ne peut être expliquée par les éléments ci-dessus).

Les méthodes qualitatives utilisent des données subjectives qui dépendent du jugement, de l’expérience et de l’expertise de ceux qui formulent les prévisions (vendeurs, consommateurs, cadres ou experts). Il existe différentes méthodes qualitatives, les plus connues sont les enquêtes de consommateurs, les panels d'experts, la méthode Delphi et les analogies historiques. Ces méthodes sont utiles lorsqu’il existe très peu de données (introduction d'un nouveau produit ou pénétration d'un nouveau marché, entreprise en démarrage), mais elles sont en général peu précises, voire fournissent des prévisions biaisées ou arbitraires, sont longues à réaliser et souvent d’un coût élevé (ex. consultation d’experts).

Les méthodes quantitatives sont basées sur des données historiques ou sur des associations entre des variables de l'environnement (ventes mensuelles réalisées au cours des dernières années, indices boursiers et économiques, achats de produits complémentaires, etc.). Il existe différentes méthodes quantitatives, comme celles des séries chronologiques (moyenne simple, mobile, pondérée, analyse de tendance, lissage exponentiel) qui prévoient en fonction de données historiques (suite d’observations dans le temps prises à intervalles réguliers) ; ou celles des méthodes causales (prévisions associatives) qui établissent des relations de cause à effet entre certaines variables de l’environnement et la variable que l’on cherche à estimer.

Les méthodes quantitatives présentent l’avantage d’être rapides à utiliser lorsque le modèle a été mis au point et le recueil des données implique souvent très peu de frais, car elles sont souvent déjà présentes dans le système d’information de l’entreprise (ex. ventes des mois passés) ou facilement accessibles (ex. indices économiques). Cependant elles présentent l’inconvénient de ne pas tenir compte de « facteurs nouveaux » ce qui suivant l’horizon de la prévision (court, moyen, long terme) peut être plus ou moins gênant.

Il existe sur le marché différents logiciels, qui permettent de réaliser une prévision de la demande par une approche quantitative en se fondant sur des données historiques. Ces logiciels offrent des fonctionnalités pour :
 Définir et piloter des objectifs : classement automatique de chaque produit par sa contribution au business en CA, volume et marge ; pilotage du taux de service (défini par l’utilisateur) au niveau le plus fin ; pilotage du niveau de stock de sécurité en fonction de la contribution et du taux de service de gestion différenciée de chaque magasin (site)
 Prévoir la demande client : prévisions hebdomadaires ou quotidiennes selon le besoin (pour chaque produit, par magasin avec prise en compte des ventes perdues et des données manquantes, incomplètes, erratiques) avec une gestion par exception, une approche spécifique pour les produits à faible défilement et l’intégration des événements/promotions à venir.

Dans ce domaine des entreprises comme Wal Mart, US Army Air Force Exchange, Printemps, … obtiennent de bons résultats, par exemple : plus de 8% d’augmentation des ventes par l’amélioration du taux de service des produits ayant la plus forte contribution et la réduction des ruptures de stock ; plus de 40% d’amélioration de la productivité des stocks en diminuant le stock sur les produits à faible défilement tout en maintenant le taux de service client ; plus de 50% de gain de temps (productivité) aussi bien au niveau magasins que central avec l’automatisation des processus et la mise en place des meilleures pratiques dans ce domaine.


Rédigé par Michel Bruley le Mardi 24 Octobre 2017 à 11:38 | Permalien | Commentaires {0}


> A LIRE EN CE MOMENT SUR DECIDEO
Profil
Michel Bruley
Michel Bruley



Galerie
scan0578.jpg
B6.JPG
B1.JPG
A.JPG
B4.jpg
B8.jpg

RSS ATOM RSS comment PODCAST Mobile


Rubriques

Rubriques