Actualités : analyse de données, Business Intelligence, Data Science, Big Data


Réussir des projets big data, quelle stratégie pour les entreprises ?


Rédigé par Christophe DE BOISSET, mc2i Groupe le 29 Juin 2016

Présent à l’esprit de tous les responsables IT depuis plus de cinq ans, le Big Data est probablement l’un des concepts les plus révolutionnaires. Il a permis l’émergence de nombreux géants comme Amazon, Google ou encore Uber : des succès qui donnent des idées. Et pourtant, une entreprise sur deux n’arrive pas à tirer bénéfice de ses bases de données. Quels conseils peut-on donner pour réussir de tels projets ?



Christophe DE BOISSET, Consultant mc2i Groupe
Christophe DE BOISSET, Consultant mc2i Groupe
La proactivité : du descriptif au prédictif
Il faut parler en premier lieu de la connaissance du client, grâce à laquelle Netflix ou Opodo ont réussi à conquérir d’énormes marchés. En constituant de vastes bases de données sur les activités de leurs utilisateurs, de nombreux outils (moteurs de recommandations, prix variables) ont pu être déployés.

Aujourd’hui, décrire simplement le comportement d’un client ne suffit plus. Il faut être proactif dans sa relation, passer du descriptif au prédictif afin de se positionner en amont des besoins, avant même que ceux-ci ne soient exprimés. Par exemple, Orange a mis en œuvre ce concept en déployant un système de détection des box foudroyées afin d’en proposer une nouvelle à ses clients avant même que ceux-ci ne la demande. Résultats ? Un retour sur investissement de 2.8 M€ dès la première année et d’excellents retours clients.


Une veille en amont : la clef pour anticiper
Cette proactivité ne doit pas seulement s’exprimer dans la relation client mais dans l’architecture même de l’entreprise. La réussite d’un projet sur les données passera donc en premier lieu par la formation d’une équipe mixte constituée à la fois d’experts techniques et fonctionnels. Les premiers sont en effet indispensables pour la réalisation et le déploiement, mais pas seulement car il est en plus nécessaire de mettre en place une veille technologique.

En effet, les outils les plus performants au terme du projet ne seront pas encore conçus au début de celui-ci. Il faudra alors migrer sur les nouvelles solutions afin de ne pas être limité par une architecture dépassée.

C’est ce qui est arrivé à Mappy, confronté à la lenteur des calculs générée par la taille de ses bases (plus de 2,5 milliards de lignes). La société a donc conçu une application en interne, Indexima, qui, en court-circuitant les technologies du marché, a divisé par mille le temps de calcul. Bel exemple d’agilité et de proactivité.


Le big data en temps réel
Il faut enfin accélérer les processus afin de s’approcher du temps réel, identifié comme étant un des axes d’évolution majeurs au cours du salon big data à Paris tenu les 7 et 8 mars derniers. Découpler la captation et l’analyse des données n’est plus pertinent. L’ensemble doit être simultané afin d’être plus réactif dans les domaines de la finance ou la cyber-sécurité. L’émergence de nouveaux modules tels que Storm ou l’utilisation des langages fonctionnels tels que Scala à la place de SQL, prouve que le temps réel commence à être placé au cœur des problématiques big data. Ebay a récemment lancé Pulsar. MapR ou Cloudera ont renforcé leurs capacités dans ces domaines. Une piste à étudier pour débuter une veille technologique.




Nouveau commentaire :
Twitter

Vous pouvez commenter ou apporter un complément d’information à tous les articles de ce site. Les commentaires sont libres et ouverts à tous. Néanmoins, nous nous réservons le droit de supprimer, sans explication ni préavis, tout commentaire qui ne serait pas conforme à nos règles internes de fonctionnement, c'est-à-dire tout commentaire diffamatoire ou sans rapport avec le sujet de l’article. Par ailleurs, les commentaires anonymes sont systématiquement supprimés s’ils sont trop négatifs ou trop positifs. Ayez des opinions, partagez les avec les autres, mais assumez les ! Merci d’avance. Merci de noter également que les commentaires ne sont pas automatiquement envoyés aux rédacteurs de chaque article. Si vous souhaitez poser une question au rédacteur d'un article, contactez-le directement, n'utilisez pas les commentaires.


Twitter
Rss
LinkedIn
Facebook
Apple Podcast
App Store
Google Play Store