Actualités : analyse de données, Business Intelligence, Data Science, Big Data


L'IA pour surveiller et détecter les défauts des infrastructures


Rédigé par Communiqué de l'EPFL le 30 Septembre 2024

L’intelligence artificielle permet d’inspecter les infrastructures de grandes tailles plus efficacement et à un moindre coût. Un groupe de scientifiques de l’EPFL vient de démontrer la faisabilité d'une méthode qui sera bientôt testée sur la ligne reliant Zermatt et Brigue, dans le canton du Valais.



Le réseau Matterhorn-Gotthard Bahn relie Brigue à Zermatt. © iStock Photos
Le réseau Matterhorn-Gotthard Bahn relie Brigue à Zermatt. © iStock Photos
Assurer une inspection automatisée des voies, des traverses, du ballast et des murs de soutènement: telle est la promesse de l’intelligence artificielle (IA) pour renforcer la sécurité du rail. À l’EPFL, le Laboratoire des systèmes intelligents de maintenance et d'opérations (IMOS) rend cet objectif de plus en plus tangible. Dans une publication parue dans la revue Automation in Construction, son équipe a mis au point une méthode pilotée par l'IA qui améliore l'efficacité de la détection des fissures dans les structures en béton. Leur nouvelle approche utilise «l'intelligence artificielle explicable», qui permet de comprendre la base des décisions de l'IA.

«Nous avons entraîné un algorithme à différencier des images avec et sans fissures dans des murs de béton, une tâche de classification binaire, en lui fournissant des centaines d'échantillons des deux catégories. Ensuite, nous avons demandé à l'algorithme de mettre en évidence les pixels qu'il avait utilisés pour prendre sa décision», indique Florent Forest, premier auteur et postdoctorant au laboratoire IMOS. L'algorithme a identifié avec succès les pixels correspondant aux fissures. «Avec notre approche, les exploitants peuvent fournir à l'algorithme des images prises sur plusieurs années d'un tronçon de chemin de fer – ou de tout autre type d'infrastructure régulièrement inspectée – et lui demander de quantifier la gravité des fissures dans les murs et les traverses au fil du temps. Cela permettra aux exploitants de ces infrastructures de planifier les travaux de maintenance plus efficacement».

Contrôle optimisé

Actuellement, les opérateurs ferroviaires inspectent régulièrement l'état des infrastructures sur la base de critères prédéfinis, avec des notes attribuées par des inspectrices et inspecteurs expérimentés. Ce processus a le désavantage d’être subjectif. Il est aussi difficile de suivre les changements dans le temps, en particulier lorsque des personnes différentes évaluent la même section de l'infrastructure à des moments différents.

Avec les progrès de la numérisation, les exploitants inspectent désormais l'état des voies à l'aide d'un wagon de surveillance spécialisé équipé de divers appareils de mesure ainsi que de caméras situées sur les côtés et au sol pour l'inspection visuelle des rails, des traverses en béton et des murs de soutènement. En appliquant les systèmes d'IA développés pour quantifier la gravité des dommages, le processus d'inspection pourra être automatisé avec l’avantage d’être plus objectif, plus précis et plus facile à comparer dans le temps.

A la suite de cette publication, les groupes de recherche de l'EPFL testeront leur méthode sur un tronçon de chemin de fer situé entre Zermatt et Brigue, et entre Brigue et Disentis. Ces sections comprennent un certain nombre de murs de soutènement de formes et de matériaux différents, ce qui compliquera considérablement la tâche de l'algorithme. Les scientifiques ont déjà recueilli des images de drones, ainsi que celles du wagon d’inspection. Elles et ils utiliseront leur algorithme d'IA pour aider l'opérateur ferroviaire à surveiller l'état de l'infrastructure de manière plus fréquente et systématique.

Cette recherche a bénéficié d’une bourse interne à la Faculté de l’environnement naturel, architectural et construit (ENAC) permettant à deux laboratoires de travailler ensemble: le Laboratoire des systèmes intelligents de maintenance et d'opérations (IMOS) et le Laboratoire de science informatique environnementale et d'observation de la Terre (ECEO).

Financement : ENAC Grant

Références : Florent Forest, Hugo Porta, Devis Tuia, Olga Fink, “From classification to segmentation with explainable AI: A study on crack detection and growth monitoring”, Automation in Construction, September 2024.




Nouveau commentaire :
Twitter

Vous pouvez commenter ou apporter un complément d’information à tous les articles de ce site. Les commentaires sont libres et ouverts à tous. Néanmoins, nous nous réservons le droit de supprimer, sans explication ni préavis, tout commentaire qui ne serait pas conforme à nos règles internes de fonctionnement, c'est-à-dire tout commentaire diffamatoire ou sans rapport avec le sujet de l’article. Par ailleurs, les commentaires anonymes sont systématiquement supprimés s’ils sont trop négatifs ou trop positifs. Ayez des opinions, partagez les avec les autres, mais assumez les ! Merci d’avance. Merci de noter également que les commentaires ne sont pas automatiquement envoyés aux rédacteurs de chaque article. Si vous souhaitez poser une question au rédacteur d'un article, contactez-le directement, n'utilisez pas les commentaires.


Twitter
Rss
LinkedIn
Facebook
Apple Podcast
App Store
Google Play Store