A trop avoir voulu intégrer de fonctionnalités dans leurs produits, les éditeurs de progiciel de gestion intégré (PGI) ont créés des dinosaures informatiques dont la disparition est amorcée. Au départ il y avait eu l’idée de faciliter l’intégration de la gestion en construisant des applications informatiques (comptabilité, paie, gestion de stocks, …), de manière modulaire (modules indépendants entre eux), et de rester ouverts aux spécificités des métiers et donc à l’intégration avec d’autres systèmes.
Très rapidement les éditeurs ont été hégémoniques et ont développés des offres cherchant à couvrir tous les besoins fonctionnels opérationnels ou décisionnels, avec de nombreuses variantes sectorielles. De plus avec le développement de la globalisation des affaires, les éditeurs ont été amenés à faire en sorte que leurs progiciels puissent gérer et prendre en charge plusieurs entités ou organisations (filiales, etc.), périodes différentes simultanées (exercices comptables par exemple), devises, langues pour les utilisateurs et les clients (cas des multinationales), législations et plans de comptes.
Les inconvénients majeurs de cette approche se sont vite révélés : coût élevé, lourdeur, rigidité de mise en œuvre et surtout périmètre fonctionnel le plus souvent inadapté, trop étroit sur le cœur du métier et trop large pour la plupart des autres fonctions. Il faut en outre ajouter des difficultés d'appropriation par les collaborateurs, la nécessité parfois d'adapter certains processus au progiciel, l’importance de la maintenance continue, sans oublier la captivité vis à vis de l'éditeur.
Pour pallier à cette situation hautement dommageable, un virage fonctionnel et technique est en cours vers la distribution des fonctions en différentes applications, indépendantes techniquement et interfacées avec le noyau du progiciel de gestion intégré, le tout architecturé autour d’un EAI. L'intégration d'applications d'entreprise (en anglais Enterprise Application Integration, EAI) est une architecture informatique permettant à des applications hétérogènes de gérer leurs échanges en temps réel. Cette architecture permet d’intégrer des applications spécifiques centrées sur une fonction ou un aspect particulier d’une entreprise ou d’un métier comme la gestion des ateliers (MES), la gestion des laboratoires (LIMS), la gestion de la réservation dans les transports, la gestion des risques dans la banque, des réseaux dans les télécommunications, etc….
Les systèmes d’information architecturés avec un EAI sont plus à même d’intégrer la diversité, de concilier la profondeur métier avec l’intégration, tout en gardant l’indépendance de maintenance de chaque application. Cela est favorable aussi l’ouverture, comme pour l’EDI (Échange de Données Informatisé) qui permet d'échanger des informations selon un format standardisé comme l’EAN (biens de consommation), ODETTE ou CAP (Industrie automobile), RosettaNet (électronique), CIDX (chimie), PIDX (pétrole). C’est aussi une bonne architecture pour intégrer activement un entrepôt de données d’entreprise.
En matière de système décisionnel la problématique est la même, l’architecture intégrant un entrepôt de données via un EAI est mieux que les batteries de tableaux de bord et des moyens d’analyse fournit en standard avec un progiciel de gestion intégré. D’autant plus que les PGI cohabitent pratiquement toujours avec de nombreuses autres applications comme déjà évoqué plus haut (celles qui sont spécifiques à certains aspects du cœur du métier de l’entreprise), dés lors il est pertinent de vouloir maîtriser ces multiples sources de données, de relier à un niveau détaillé les données clés de l’activité et de ne pas se contenter de rapprocher des données agrégées dans des tableaux de bord.
(Voir l’architecture de référence Teradata via le lien http://www.teradata.com/t/page/132236/ )
L’apport essentiel d’un entrepôt de données est de mettre à disposition des utilisateurs des données historiques qui permettent une vue complète, détaillée et transverse des activités. Cette complétude est obtenue par l’intégration de toutes les données relatives aux activités, et donc concrètement par une standardisation & une organisation des données de tous les systèmes opérationnels correspondants dans un gisement unique, comme par exemple et de façon non limitative celles relatives aux applications suivantes : Customer Relation Management, Demand Planning and Forecasting, Supplier Relation Management, Advanced Planning & Scheduling, Enterprise Resources Planning, Transportation Management System, Warehouse Management System, Distributed Controlled System, Manufacturing Execution System.
Teradata, collabore sur ce thème avec de nombreux fournisseurs de progiciels et a même développé des partenariats approfondis avec certains, pour optimiser les services rendus aux utilisateurs tant sur le plan opérationnel que décisionnel. Par exemple avec SAP nous avons une équipe permanente à Walldorf, pour répondre à nos clients communs, de grandes entreprises leaders de divers secteurs comme : Coca Cola Enterprises Inc., Migros, Posteitaliane, Grupo Gigante, Metro, Dupont, Samsung, etc. …
Pour aller plus loin sur ce sujet vous pouvez utilement consulter mes articles ci-dessous :
PGI versus Best of Breed : en décisionnel la question ne se pose même pas
A chacun son rôle : ERP ou progiciels pour administrer et entrepôt de données actif pour conduire les affaires
PGI / Tableaux de bord / Entrepôt de données : complémentarité porteuse de valeur
SAP & Teradata : le duo gagnant
Rédigé par Michel Bruley le Mardi 4 Août 2009 à 09:55
|
Permalien
|
{0}
> A LIRE EN CE MOMENT SUR DECIDEO
-
Libérer l'IA sans compromis sur la sécurité : le pari des données synthétiques
-
Petit Bateau s’appuie sur Epsilon France pour moderniser son écosystème data et accompagner sa transformation digitale
-
Les défis économiques et écologiques de la révolution de l’intelligence artificielle
-
Le streaming de données ou la boite à outils pour créer les futurs services financiers
-
Données peu centralisées : un frein aux capacités d’analyse des entreprises françaises, selon Alteryx
-
Starburst annonce une capacité d’ingestion de données en streaming de 100 Gb/seconde depuis Apache Kafka vers les tables Apache Iceberg
-
Partout en Europe, des entreprises adoptent Oracle EU Sovereign Cloud pour gérer leurs données stratégiques
-
CGI accompagne Michelin dans sa stratégie Software et Data Driven
-
Toucan célèbre ses 10 ans : un nouveau cap vers l’analytics en marque blanche
-
Étude Cloudera : Près de 90 % des entreprises utilisent l'IA, mais n’en tirent pas pleinement parti du fait d'une infrastructure obsolète et de compétences insuffisantes
Profil
Michel Bruley
Liste de liens
Dernières notes
Meilleurs vœux aux parents pour 2024
10/01/2024
Galerie
Archives
Rubriques
Rubriques