Jonathan Banon, Directeur associé Lelivrescolaire.fr
Ces graphes permettent par exemple de lier la notion de « carré » avec le théorème de Pythagore et le chapitre sur les identités remarquables. Cette ressource ouvre la voie au diagnostic automatique et à une meilleure compréhension des difficultés, des lacunes et des liens entre elles. Ce nouveau niveau d’information permettra de générer une aide à la décision à usage des enseignants. Il constituera un point d’appui précieux pour les accompagner dans la personnalisation et l’orientation de leurs cours, au niveau de la classe, mais aussi de l’élève, de manière individuelle.
Quelques exemples d’apports du machine learning appliqué au monde de l’enseignement :
Afin de donner plus de lisibilité à ce concept, voici trois exemples des bénéfices constatés suite à la mise en œuvre d’une approche de type machine learning. Ces derniers démontrent très clairement qu’il est possible de faire évoluer son mode d’enseignement et de l’adapter au mieux aux spécificités de chaque élève.
- L’intégration des contraintes propres au domaine de l’ancrage mémoriel basé sur des courbes d’oubli. Lors d’une première assimilation d’une notion, un élève a 80 % de chance de l’oublier au bout de trois jours. L’enjeu est alors de prédire cet « oubli » afin de proposer des piqures de rappel adaptées à l’élève et à ses capacités de mémorisation.
- La modélisation de la difficulté des contenus en agrégeant les données recueillies lors des interactions des apprenants. L’objectif est soit d’adapter les questions à la progression de l’élève, soit de détecter des exercices mal posés et nécessitant une reformulation éditoriale.
- L'adaptation automatique de parcours d'apprentissage en fonction des interactions de l'apprenant
Plus qu’un simple phénomène de mode, le machine learning est donc un véritable levier d’apprentissage. Dans ce contexte, le monde de l’éducation devrait bénéficier de ces nombreux apports. Bien entendu, il ne s’agit nullement de remplacer les modes d’enseignement traditionnels, mais simplement de les compléter en tirant parti des nombreux avantages liés à l’utilisation du digital.
Quelques exemples d’apports du machine learning appliqué au monde de l’enseignement :
Afin de donner plus de lisibilité à ce concept, voici trois exemples des bénéfices constatés suite à la mise en œuvre d’une approche de type machine learning. Ces derniers démontrent très clairement qu’il est possible de faire évoluer son mode d’enseignement et de l’adapter au mieux aux spécificités de chaque élève.
- L’intégration des contraintes propres au domaine de l’ancrage mémoriel basé sur des courbes d’oubli. Lors d’une première assimilation d’une notion, un élève a 80 % de chance de l’oublier au bout de trois jours. L’enjeu est alors de prédire cet « oubli » afin de proposer des piqures de rappel adaptées à l’élève et à ses capacités de mémorisation.
- La modélisation de la difficulté des contenus en agrégeant les données recueillies lors des interactions des apprenants. L’objectif est soit d’adapter les questions à la progression de l’élève, soit de détecter des exercices mal posés et nécessitant une reformulation éditoriale.
- L'adaptation automatique de parcours d'apprentissage en fonction des interactions de l'apprenant
Plus qu’un simple phénomène de mode, le machine learning est donc un véritable levier d’apprentissage. Dans ce contexte, le monde de l’éducation devrait bénéficier de ces nombreux apports. Bien entendu, il ne s’agit nullement de remplacer les modes d’enseignement traditionnels, mais simplement de les compléter en tirant parti des nombreux avantages liés à l’utilisation du digital.