Actualités : analyse de données, Business Intelligence, Data Science, Big Data


L'ESILV lance une Chaire de Recherche avec reciTAL.ai pour développer le sens critique d'une I.A.


Rédigé par Communiqué de Recital.ai le 22 Septembre 2020

Une alliance pour permettre à l'IA d'apporter des réponses fiables à nos questions. L'un des axes de recherche de cette Chaire sera consacré à une application d'apprentissage du langage des signes entre un enfant mal entendant et ses parents.



L'éditeur français de logiciels de traitement automatisé du langage reciTAL s'est rapproché du Centre d'expertise de l'ESILV, le DVIC, réputé notamment pour ses travaux sur les algorithmes, pour signer un partenariat académique d'une durée de 3 ans. L'objectif de la ‘Chaire de Recherche sur les réseaux de neurones bayésiens » est de permettre à une machine d'estimer son degré d'incertitude dans les processus décisionnels d'intelligence artificielle.

Une association d'expertises en Intelligence Artificielle
DVIC (De Vinci Innovation Center) est le centre d'expertise transdisciplinaire du Pôle Léonard de Vinci. Le DVIC fait partie du Centre de Recherche De Vinci qui regroupe l'ensemble des chercheurs des écoles du Pôle Léonard de Vinci (EMLV, ESILV et IIM). Ce laboratoire explore les technologies de pointe dans des domaines tels que l'intelligence artificielle, la robotique collaborative, les Interactions homme-machine, vie et organique et bien d'autres.

RecitTALl.ai (https://recital.ai), est un éditeur de logiciels d'intelligence artificielle spécialisé dans le Traitement Automatique du Langage (TAL). La start-up s'appuie sur des algorithmes de machine learning pour développer des solutions permettant d'analyser les données textuelles, qu'elles soient structurées ou non, pour en extraire les informations essentielles, de manière à automatiser le traitement de tâches récurrentes qui font perdre du temps au collaborateur. La start-up a créé une plateforme de Document Intelligence, une IA qui répond à n'importe quelle requête d'un humain en langage naturel, que ce soit à l'oral ou à l'écrit.

Souhaitant accélérer ses recherches sur la VQA (Visual Questionning & Answering System), pour permettre aux machines d'évaluer leurs propres incertitudes en situation réelle, reciTAL s'est rapproché de l'ESILV, et plus particulièrement du DVIC, en créant ‘la Chaire de Recherche ReciTAL sur les réseaux de neurones bayésiens ».

Un contexte anxiogène
L'une des principales critiques concernant l'Intelligence Artificielle (IA) repose sur son fonctionnement en ‘Black Box' : elle est incapable de nous dire ce dont elle est certaine et ce qu'elle ignore. Comment un usager peut-il alors avoir confiance dans la machine dans des situations critiques ?
Nous faisons appel tous les jours aux assistants personnels mais cette IA trouve rapidement ses limites de fonctionnement.
Qu'il s'agisse de vision du monde : si l'on prend l'exemple d'une voiture autonome dans la nuit, comment une machine peut-elle être certaine de ce qu'elle distingue et interprète à l'instar d'un conducteur humain ?
De représentation du monde : si les systèmes modernes utilisent le deep learning qui permet un résumé automatique de textes aux applications aussi variées que la finance ou l'éducation, on ignore cependant quelles parties du résumé sont fiables ou incertaines.
D'interaction avec le monde : l'une des principales difficultés des agents conversationnels (chatbots types Siri, Alexa, Cortara…) consiste à identifier les éléments non compris lors d'une requête humaine. Ils appliquent bêtement des associations d'actions ou de réaction en ‘best effort' alors qu'un être humain engagerait une conversation pour clarifier les besoins.

L'IA suscite des craintes quant à son déploiement à grande échelle car nous n'avons pas confiance dans sa capacité à être critique envers ses propres processus de décision.

ReciTAL.ai et l'ESILV (au travers du DVIC du Pôle Léonard de Vinci) s'attaquent à ce sujet en essayant de rendre explicable le fonctionnement d'une IA à travers une nouvelle approche de réseaux de neurones bayésiens.
L'objectif est de permettre à l'IA de nuancer ses résultats en identifiant les éléments importants et ceux qu'elle n'aura pas pris en compte ou mal interprétés.

Un partenariat gagnant
Un doctorant, co-financé par reciTAL.ai travaillera pendant 3 ans sur l'approche bayésienne dans les réseaux de neurones avec une application ciblée sur les systèmes de réponses aux questionnements visuels.
Le montant de la chaire s'élève à 150k€ sur 3 ans.
Partageant le souci d'une approche « Tech For Good », l'ESILV et ReciTAL, ont décidé d'appliquer cette recherche dans le cadre d'une application dédiée à l'apprentissage du langage des signes entre enfant mal entendant et ses parents.
Informations complémentaires sur simple demande




Nouveau commentaire :
Twitter

Vous pouvez commenter ou apporter un complément d’information à tous les articles de ce site. Les commentaires sont libres et ouverts à tous. Néanmoins, nous nous réservons le droit de supprimer, sans explication ni préavis, tout commentaire qui ne serait pas conforme à nos règles internes de fonctionnement, c'est-à-dire tout commentaire diffamatoire ou sans rapport avec le sujet de l’article. Par ailleurs, les commentaires anonymes sont systématiquement supprimés s’ils sont trop négatifs ou trop positifs. Ayez des opinions, partagez les avec les autres, mais assumez les ! Merci d’avance. Merci de noter également que les commentaires ne sont pas automatiquement envoyés aux rédacteurs de chaque article. Si vous souhaitez poser une question au rédacteur d'un article, contactez-le directement, n'utilisez pas les commentaires.


Twitter
Rss
LinkedIn
Facebook
Apple Podcast
App Store
Google Play Store